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ABSTRACT: We derive compact expressions for one-loop scattering amplitudes of four open-
string vector bosons around supersymmetric configurations with intersecting or magnetized
D-branes on toroidal orbifolds. We check the validity of our formulae against the structure
of their singularities and their behaviour under modular transformations to the transverse
channel, exposing closed string exchange. We then specialize to the case of forward scat-
tering and compute the total cross section for two massless open string vector bosons on
the brane to decay into closed strings in the bulk, relying on the optical theorem. Although
not directly related to collider signatures our predictions represent a step forward towards
unveiling phenomenological implications of open and unoriented superstrings.
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1. Introduction and conclusions

Vacuum configurations with open and unoriented strings have proven to be a particu-
larly rich arena where to address compelling phenomenological issues in a string context
amenable to explicit computations (see e.g. [fi]l-f] for comprehensive reviews).

After their systematization []-[[§, including subtle effects such as rank reduction
induced by a quantized NS-NS antisymmetric tensor [[4-[7 and the minimal coupling
of RR p-form potentials in an asymmetric superghost picture [I4, [L5], these theories have
received an enormous boost when their geometric description in terms of D-branes and
Q-planes [I§, [9], pioneered in [2d, R, has catalyzed the attention of the community.

Compactifications on toroidal orbifolds [P3—P7] with intersecting [B§ B3] and/or mag-
netized [B§—B7] branes represent a simple yet interesting class of models where problems
connected with the presence of (large) extra dimensions [B§-[(], supersymmetry break-
ing [ -[H] and moduli stabilization [#6-F5 can be tackled in a controllable way. The
study of interactions that determine the structure of the low energy effective action and
higher derivative corrections thereof has lead to enormous effort at tree (disk and sphere)
level [56]-p1] but relatively little is known at one-loop [f3—Ff] and beyond [67]. Aim of
the present investigation is to improve the situation in view of potential phenomenological
application of this kind of analyses in formulating predictions for near future colliders based
on models with relatively small string tension and /or large extra dimensions [f§—[1].

With this goal in mind, we use the standard NSR formalism [[fJ] to derive compact
expressions for one-loop scattering amplitudes of four open-string vector bosons around
vacuum configurations with open and unoriented strings preserving some supersymimetry.
Remarkably, in addition to the standard elliptic functions, our final formulae only involve
two more modular forms denoted by Ex and Fjs in the following. We check the validity
of our results, that generalize and extend the classic results of Green and Schwarz in
D = 10 [7d, [4), against the structure of their singularities and the properties under
modular transformations to the transverse channel that exposes closed string tree-level
exchange.

We then compute the total cross section oy (s) for two (massless) open string vector
bosons on the brane to decay into closed strings in the bulk around general unoriented
vacuum configurations preserving at least N/ = 1 supersymmetry. The optical theorem
relates oy¢(s) to the imaginary part of the foward scattering amplitude A(s). We work
to lowest order in gs, i.e. |disk|? ~ Im(annulus). In principle, one could directly compute
the amplitudes for the decay of two massless open string states into (massive) closed string
states on the disk. These amplitudes are however plagued with subtle normalization prob-
lems and we find it more convenient to extract them from the non-planar one-loop forward
scattering amplitudes [p§—[1].

The relevant contribution to the process corresponds to an amplitude with vector
bosons with the same Chan-Paton factors that can annihilate into gauge-singlet closed
string states. More general initial states, involving massless open string scalars or fermions
can be computed similarly. Processes initiated by gauginos, in the Adjoint of the Chan-

Paton group, or matter scalars, in chiral multiplets, are not relevant for collider physics. In



addition to the presently studied processes initiated by vector bosons, transforming in the
Adjoint of the Chan-Paton group and belonging to the untwisted sector of the orbifold with
integer modes connecting parallel or equally magnetized branes, one should also consider
processes initiated by matter fermions, that may either belong to the untwisted sector or to
twisted sectors connecting branes intersecting at angles or with different magnetic fluxes.
The latter can be studied in parallel and will be the focus of [{g].

Our present analysis exploits remarkable properties of elliptic functions [[ff] and free
field propagators on genus one surfaces with or without boundaries and crosscaps to com-
pute and simplify the worldsheet correlators. After deriving compact expressions for the
one-loop non-planar amplitudes under consideration, we specialize them to the case of
forward scattering. Extracting their imaginary part, we determine the total cross sec-
tion for the deacy into closed strings as a function of the remaining Mandelstam variable
s = —(p1 + p2)? = —2p; - p2. It shows the expected peak and threshold structure that
encodes the properties of the brane configuration in the internal space.

The plan of the paper is as follows. In section ] we recall basic formulae for vertex
operators and tree level scattering amplitudes. In section f we compute the one-loop
contractions relevant for CP even processes. Section [ contains a summary of the results
for the reader who is not interested in the details of the derivations. CP odd amplitudes
receiving contribution only from N = 1 sectors are discussed in section []. The case
of forward scattering both for CP even and CP odd amplitudes is studied in section [,
while the total cross sections for the decay into closed strings in the bulk are discussed in
section ﬂ We present our final comments and draw perspectives for our future investigation
in section J§.

Some properties of elliptic functions are collected in the appendices that should be
consulted for notation and conventions.

2. Tree level amplitude

For completeness, comparison and later purposes we report here the results for the tree level
(disk) scattering amplitude of four open string gauge bosons. The result is independent
of the amount of supersymmetry enjoyed by the vacuum configuration, since the relevant

vertex operators in the NSR formalism'

Vi (2) = a(0X, +ip - ¥iby) eP X (2)TED
Vf‘%(z) = alpe? eip'X(z)Tgw‘};, (2.1)

with p2 = 0, a - p = 0 for BRS invariance and @ = Qa, do not depend on the details of the
compactification encoded in the internal CFT, to be specified later on. In other words they
only involve the identity operator that has trivial correlators. The matrices 7T, gg‘; belong to
the adjoint of the Chan-Paton group, i.e. to the NN for U(N) or to the N(N 4 1)/2 for
Sp(INV) or SO(N).

!Unless otherwise stated, we set o’ = 1/2 henceforth.



Vertex operators are inserted on the boundary of the disk that is conformally equivalent
to the upper half plane whereby z; = x; € R. Three ¢ ghost insertions are needed to fix
SL(2,R) invariance. The tree level four bosons scattering amplitude is then given by

A (pis a;) = (2.2)

gs tr(T1 ToT3Ty) / dz3(cVo(z1;p1, a1)cV_i(2z2; p2, a2)Vo(z3; p3, az)cV_i(z4; pa, aq)) ,

up to permutations of the external legs.
After performing the free field contractions and including the relevant non-cyclic per-
mutations, one finds?

Al (piai) = g5(2m) 6 pi) K0 (pis i) X
i

{[tr(T1T2T3T4) + tI‘(TlT4T3T2)]B(S, t) +
[tr(T1T3T4T2) + tr(T1T2T4T3)]B(t, u) +
[tI‘(TlT4T2T3) + tI‘(TlT3T2T4)]B(u, S)} , (23)

where . ) )
B(s, 1) = / dra?rir () pyempet - Do) (zalt) (2.4)
0 I'(a/u)
is Euler Beta function that appears in the celebrated Veneziano amplitude, s = —(p; +

p2)® = =2p1-p2, t = —(p1 +pa)* = —2p1 - pa, u = —(p1 + p3)* = —2p1 - p3 and thus
s+t+u=0.
The bosonic kinematic factor K (p;,a;) is totally symmetric (not simply cyclically

V—VV
symmetric!) and reads [, @]

1
Kf)ff_e,w (pi,a;) = —Z(stal - agag - ag + usay - agas - as + tuay - agas - aq) (2.5)

S
—|—§(a1 - P4Qs - P2ag - G4 + Az - P34 - P1a1 - A3 + Q1 - P3Gy - P2a2 - A3 + A2 - Paas - Pra - aq)

t
+§(a2 - P1a4 - P3a3 - Q1 + a3 - Paaq - P2ag - G4 + G - P4G1 - P3G3 - G4 + A3 - P1a4 - P2a2 - 1)

u
+§(a1 - P2a4 - P3a3 - G2 + a3 - P4Ag - P1a1 - G4 + Q1 - P4G2 - P3G3 - G4 + A3 - P2a4 - P1a2 - A1)

in dimension D = 10 as well as in lower dimensions. It may be written more compactly in
terms of the linearized field strengths

7 = plaf — pfalt = 1" 26)
thus getting a manifestly gauge invariant expression

Ky (ai, pi) = %[(f1f2f3f4) + (fifsfaf2) + (frfafafs)]
(AR Fsf) + (i) afo) + (AT (o) 2.7

2We use mostly plus signature for the Lorentz metric 7., = (—, +, +, +).



where

(filifuf) = FEI; o fRo T u (2.8)

and
(fifi) = Fivfiu - (2.9)
For forward scattering py = —p; and p3 = —ps, so that t =0 and u = —s, a3 = as and

a4 = a1, the kinematic factor drastically simplifies to

K FStree _ (o/s)Qa%a% ) (2.10)

VV—VV

3. One-loop CP even amplitudes

In this section we compute the worldsheet correlators that appear in the one-loop scattering
amplitudes (planar, non-planar and non-orientable) of four open string vector bosons for
supersymmetric models with intersecting and magnetized branes on orbifolds®. For the
moment we focus on CP even amplitudes that recieve contribution from the even spin
structure in the NSR formalism. CP odd amplitudes from the odd spin structure are
described in the next section.

Up to Chan-Paton factors, the one-loop four vector boson amplitude in the direct
channel (‘open string’ description) reads

Ao =2 [ [ T]a
— 7y Y1 - i
VU VU S 0 t R Z

> calVolz15p1, 01)Vo(22; p2, a2) Vo (235 s, a3) Vo243 pa, aa) ) - (3.1)
[e%

The power of the modular parameter ¢ in the denominator takes care of the volume
of the conformal Killing group and effectively cancels the integration over the ‘center of
mass’ coordinate the correlator is independent of. Additional negative powers of ¢ will
appear as a result of integration over loop momentum. Summation over the spin structures
a (o = 2,3,4 even, « = 1 odd) with appropriate coefficients ¢, implements the GSO
projection. Moreover summation over the various kinds of magnetized or intersecting
branes, later on labelled by a = 1,..., N, with N, = Tr,(1), and the various sectors of the
orbifold, later on labelled by k = 0,...,n — 1 for the case of I' = Z,,, is understood.

In the planar case, all the four vectors should belong to the same factor in the Chan-
Paton group and the annulus amplitude A is schematically given by

APlan  — e, (MY To T3 TaWy) trp (W) Aas (1,2, 3, 4) (3.2)

VUV—VV

where the discrete Wilson lines W represent the projective embedding of the orbifold group
I" in the Chan-Paton group. The open string vertices are inserted on the same boundary
of the worldsheet, z = —Z, and the integration region is given by

Rﬁanz{zi:iyi:0<y1<y2<y3<y4<1m7'«4:t/2}' (3.3)

3Some properties of elliptic functions and propagators are collected in the appendix that should be
consulted for notation and conventions.



Non-planar amplitudes receive contribution also when the vector bosons belong to
different factors of the Chan-Paton group, i.e. end on different stacks of D-branes. Up to
permutations, depending on the choice of the Chan-Paton matrices for the external legs,
the corresponding annulus amplitude A reads

Aronpl o (W T Ty try (Wi T3 Ta) Ay (1, 2; 3, 4) . (3.4)

VV—VV

The integration region is given by is

‘ 1
RIS = {210 = iy12, 234 = 5 Ty 0 <y; <Imrs=1/2} (3.5)

but otherwise unrestricted. This will play a crucial role later on in section [i.

For unoriented strings, the only ones where tadpole cancellation can be achieved thanks
to the contribution of the Q-planes, one has to take into account the contribution of the
Mobius strip M, too. Up to permutations, it reads

Avner = tr (M Ty T3 TyWst ) Maa(1,2,3,4) (3.6)

VV—VV

where WQ% implements the action of the worldsheet parity in the Chan-Paton group. The
choice of N’s and W’s as well as of the fluxes and intersection angles is tightly constrained
by consistency conditions such as RR-tadpole cancellation [[7-B1]. We will assume that
such a choice has been made and shall not discuss this issue any further in this paper.
Moreover we will not consider phenomena associated to the presence of anomalous U(1)’s

discussed in [B3—Rj].

For the Mébius strip M, the integration region is given by
1
Rm =z :iyﬁ—ié 0<y1 <ya<ys<ys < Imrpg=1t/2;0=1,2}. (3.7)

Given the form of the vector emission vertices there are in principle five different kinds
of contributions to the worldsheet correlators:

((0X) )+ “47((0X)* (W) o + “67((9X)* (Y1) *)a + “47((OX) (1)) + (1)) ) . (3.8)

It is easy to check that the first two kinds of terms vanish for any supersymmetric vacuum
configuration after summation over the even spin structures or lack of fermionic zero-modes
in the odd spin structure. We are thus left with the last three structures.

Contractions of the spacetime bosonic coordinates, satisfying Neumann boundary con-

ditions, are performed by means of

G —w) = 5[Gr(z —w) + Gr(z — @) + Gr (s —w) 4+ Gr(: @), (39)

where Z =1—2 = z and w = 1 — w = w for open string insertions on the boundary of
¥ = A, M, and Gr(z,w) is the bosonic propagator (Bargmann kernel) on the covering
torus

— ——Im(z—w)?| , (3.10)




with 7 = 5.
In the even spin structures, free fermion contractions are performed by means of
Oa(z — w) 61(0)

Solz —w) = 912 =) 0o (0) (3.11)

the fermionic propagator (Szego kernel).
In the odd spin structure, the fermionic propagator may be taken to be

Si(z —w) = -0,G(z —w) . (3.12)
Contractions are weighted by the partition function

zZN = ()b (3.13)

ak

whose explicit form, as we will momentarily see depends on the sector under consideration,
i.e. on the choice of k and a,b that determine the number of preserved supersymmetries

N.

3.1 N =4 sectors: only CP even amplitudes as in D = 10

Actually for N = 4 sectors only the last term in (B.§) contributes, i.e. survives summation
over the (even) spin structures. The fermionic contractions give a constant since the lowest
derivative, o/ — 0 limit, four-vector amplitude is BPS saturated in these sectors.

N = 4 open string sectors are characterized by k = 0 and connect parallel and equally

magnetized branes (‘neutral’ and ‘dipole’ strings [}, 6d]). The partition function is given
by

_ _.0%(0
ZN=1 = = 0‘52) : (3.14)
n
where f .
_ d .%'0/\ b
xN=1 = a 3.15
ab 2G5020Mors (/)2 (3.15)

takes care of numerical factors and bosonic zero modes. In particular, [ d*zy = Vy is
the (regulated) volume of spacetime, [ dipgexp(—ma/p?) = 1/(a/t)?, and Ay denotes the
6-dimensional sum over generalized KK momenta. The numerical factors result from the
various projections ZQGSO , Zg and erbif old,

Up to permutations, the (non)planar annulus amplitude reads

4

> dt
—A, d —PipiGalziy) 3.16
[y S 1 1 € 7 3.16)

i<j

2m)4
Aab(la 2,354)(pi,ai) = 93( TL) 6(2 pZ)K:Z)efwv(plv CL@') X
)

where G4 is the free bosonic propagator on the boundary of the annulus A (B.9). The
integration regions Rﬁfan and Rzonfp lan pave been discussed above. As indicated, the

kinematic factor K¢ is exactly the same as at tree level.



The unoriented Mobius amplitude reads

(2m)*
Maa(1,2,3,4) = g7=0(3 _ pi) K0, (pis ai) X

/o %Aad(TA)/~ [T der JJ e riroat=u), (3.17)

Rm g i<j

where G is the free boson propagator on the boundary of the Mébius strip (B.9).

3.2 N =1,2 sectors: CP even amplitudes

Let us consider the N' = 1 and N = 2 supersymmetric sectors that can be analyzed in
parallel in the even spin structures. The odd spin structure needs a separate analysis. The
main difference between the two cases resides in the internal contribution . Our analyses

'~

applies to arbitrary choices (‘parallel’ [E] or ‘oblique’ [BG]) of constant abelian magnetic

fluxes* or intersecting angles in (supersymmetric) orbifold compactifications.

In the A/ = 1 case one has

(et = 2ty = ey 2O falti)

— ) 3.18

a,k,z—: o ab 773 ; 91 (ucjlb) ( )
where .
_ 7, d

P (3.19)

" 2as020n0p('t)?

Zap is some discrete multiplicity, e.g. degeneracy of Landau levels, number of fixed points
or intersections,

uly = elyra + kvl (3.20)

with €£b denoting intersection angles or magnetic shifts and kzvéb implementing some Z,,
orbifold projection with ¥ = 0,1,...n — 1. A/ = 1 supersymmetry requires uéb # 0, with
S rul, =0 (mod 1).

In the N/ = 2 case one of the uib vanishes. For definiteness let us set uzb = 0, then

ul, = —u?, = ug, (mod 1) and one obtains
- —204(0)*0a (tap) 00 (—ab)
1O0 = ZN () = xfy T2 e abTal e 3.21
< >a,k,€ ( b) b 77691(uab)91(_uab) ( )
where |
d*zoIy A
X&AI)/-ZQ _ f .%'0 ab ab(TA) (322)

" 265020M0r(’t)?
In addition to the discrete multiplicity Z (ﬁ in the twisted or magnetized directions, a sum of
generalized KK momenta Agb(TA) in the untwisted or unmagnetized directions is present.

In both cases the Chan-Paton factors get modified to try(T"... W) by the effect of
(discrete) Wilson lines W corresponding to the projective embedding of the orbifold group
I' in the gauge group. Notice that the unbroken gauge group G for branes of type a
corresponds to the generators T such that [T, W] = 0.

Let us now consider the Wick contractions one at a time.

4A worldsheet description of the non abelian fluxes discussed in [@] is not yet available.



3.2.1 Two fermion bilinears (6 terms)
Up to permutations (six in all) the typical {(0X)2(1)1)?), correlator reads
(ar - OX e ¥ (z1)ay - OX P X (29)eP X (23)e ¥ (24)) (ips - Yag - P(z3)ipa - Yaa - Y(24))a -

(3.23)
The bosonic correlator yields

(a1 - 0XePrX (2))ag - 0X eP? X (23)eP3 X (23)eP+X (24)) =
[a1 - a20102G(z12) — Z ai - pi01G(214) Z as - p;02G(225) 1L(ps, 2i) (3.24)
i#1 J#2
where G is the free bosonic propagator defined in (B.9) and
(pi, 1) = [ [ expl=pi - psG(2i5)] - (3.25)
1<j
The fermionic correlator yields

. . 1
(ips - Yas - Y(z3)ips - Yas - P(21))a = —22—2(f3f4)52(234)2a , (3.26)
where S, is the fermionic propagator (Szego kernel) for even spin structures defined
in (B.11)). Using
S (z—w) =Pz —w) —eq_1, (3.27)

where P(z) is Weierstrass P function

P(z) = —0%logb1(2) — 211, (3.28)
with L07(0)
m = —2mid; logn = 6 91{(0) , (3.29)
since 0(0) = 27, and
a1 = —dmi—log 6‘;‘7((07‘)7 ). (3.30)

it is easy to see that only the term 0, log 6, in e,_1 survives summation over the even spin
structures.
For N/ = 1 sectors, one finds

/" I / I /
Exa(uly) = = Y 2O T Hagu;w)) —or = 5 ) =t P0)
I

~ 01 (ul, — 01 (ul,) @ H(0)
(3.31)
where
H(z) = H 01(z +ul,) (3.32)
I

and the zero-mode factor XY ="' is defined in (B-19).



For N = 2 sectors one finds

ag(o)ea(o)ea (uab)ea(_uab)

Enolugy) = XN=2 = 4r2xN=2 3.33
( a, ) ab a 77691(Uab)91(—uab) ab ( )
where the zero-mode factor X =2 is defined in (B:23).
Thus, eventually the fermionic correlator
) . 1
<Zp3 : ¢a3 : 7/1(23)11)4 : ¢a4 : ¢(Z4)>even = _§(f3f4)gj\f=1,2(uéb) (334)

turns out to be independent of the insertion points in A” = 1,2 sectors. As already stated,
it receives vanishing contribution from N = 4 sectors.

3.2.2 Three fermion bilinears (4 terms)

Up to permutations (four in all) the correlator ((¢%)3(0X)), can be most conveniently
computed by observing that normal ordering of the fermion bilinears : 1) : allows only for
a cyclic Lorentz contraction that yields

3
(ip1 - Yay - Yips - Yas - Pips - Yag - P = —i%(f1fzfs)Sa(212)5a(Z23)5a(213)30/Ya (3.35)

where z;; = z; — z; and

(fifofs) = fivfspf8u - (3.36)
Using the identity
So(213)Sa(223) = Salz12)w(21, 22, 23) + Sp(212) (3.37)
where
w(zl, 29, 2’3) =0 log 91(212) + 0oy log 01(2’23) + 03 log 01(2’31) R (3.38)

re-combining the two S,(212), using (B.27) and

Su(2)S.(2) = %@(P(z) —eat) = %P'(z), (3.39)

and summing over spin structures yields

(ip1 - Yay - Yipa - Pag - Yip3 - Yas - P)even = —i(f1f2f3)w(21, 22, ZB)EN(uéb) ) (3.40)

which is manifestly symmetric under any permutation of the three insertion points. As
already stated, this correlator gets no contribution from N = 4 sectors.

The bosonic correlator simply yields

(eipl'Xeim'XeipS'Xazl . 8Xeip4'X> = ZZ ay - pi04G(zia)(pi, 2) , (3.41)
24

where G is the bosonic propagator B.9 and II(p;, 2;) is the momentum factor (B.23).

,10,



3.2.3 Four fermion bilinears (1 term, 2 structures)

Let us finally consider the ((1)*), term. The bosonic coordinates contribute the momen-
tum factor II(z;p;) defined in (B.2§). Taking into account normal ordering of the : 1) :’s
allows for two kinds of contraction.

Three are connected contractions of the Lorentz indices that yield

4
((py) Yo = %(f1f2f3f4)8a(ZIQ)Sa(223)Sa(234)8a(214)za, (3.42)
where
(f1f2f3f4) :ffufgpf:f)\fi\u . (3.43)

Using (B.37), the product of fermionic propagators can be simplified to

[Sa(z13)w(21, 22, 23) + S (213)][Sa (213)w(21, 24, 23) + Si(213)]

= w(z1, 22, 23)w(21, 24, 23)[P(213) — €a—1] (3.44)

1
+§[w(21, 29, 23) + w(z1, 24, 23) P’ (213) + Sk (213)? .

Summing over spin structures only the first and the last term survive. Let us denote them
by Un(z;) and Var(z;). The former simply reads
Un(2) = —w(21, 22, 23)w(21, 24, 23)En(uly) (3.45)
The latter is more laborious. Observing that
S0(2)? = 0:[Sa(2)S4(2)] = Sa(2)Sa(2) (3.46)
which, using (B.27), in turn gives
S (2)* = %P”(z) — Sa(2)82(2) (3.47)

it is clear that only the second term contributes after summation over the spin structures,
so that
Vn(z) = lim 023 caSalz03)Sal213) 22 . (3.48)

Z0—Z1
[e%

Further using (B-37) in the following guise

0r,(201)
aa(201) ’

Sa(203)Sa(13) = Salz01) [w (23) + (3.49)

where

01(z — x)
01(2 —y)
is a differential of the third kind with two simple poles with opposite residues (+1) at z = x

We—y(2) = 0, log (3.50)

and z = y, yields

Vn(z) = — lim 02 an - zN (3.51)

20—21

|:9a(301) 0o (201)"

w4 (2
- 01(z01) 1(23) 01(z01)

— 11 —



Both terms can be computed by means of the Riemann identity for even spin structures

Z Caaa(zl)aa(ZQ)Ha(ZZS)HCV(Z‘l) =

01(21)01(22)01(25)01(=)) — 01(21)01(23)01(25) 01 (25) , (3.52)
where 2z, and 2/ are related to z; through
ZiZ%(Z1+Zz+Z3+Z4) ZQZ%(21+Z2—23—Z4)
25 = %(zl — 29+ 23— 24) zy = %(zl — 29 — 23 + 24) (3.53)
and

1 1
2l ==(—z1+ 22+ 23+ 21) 7 =5 — 22+ 23+ 2)

2 2
n_ 1 B n_ 1 _
25 = 2(,21 + 20 — 23+ 24) zy = 2(,21 + 20+ 23— 24) . (3.54)
For N =1 sectors
Vnet(z) = —2r =1 (3.55)
i 92 | Weo—z(28) + 020){01 (201/2)[H(201/2) —H(—Zm/?)]}]
20—21 %0 01(2’01)7’((0) ’

where H(z) is defined in (B.32), that eventually yields
n=11'(0) [8 01(z31)  167(0) 1H'"(0)}

H(0) | 261(z31) 6 6,(0) 6 H(0)
= En=1P(z13) + Fa=1, (3.56)
where
_ _1H'(0) 1H"(0)
Fa=1= 271/1’0{})[ 1 100 [3771 + 8 H0) } . (3.57)

Including the bosonic contraction producing the momentum factor (B.2) and adding the
term (B.49), one eventually finds

() Yot = 5 (oo Fo) Ly, ) (2 + (359)
+EN=1[P(213) — w(z1, 22, 23)w(21, 24, 23) + P(224) — w(22, 21, 24)w (22, 23, 24)| }

where Ex—1 has been defined above (B.31)). Symmetry under the exchange of z1, 23 with
z2, z4 has been made explicit though unnecessary, since we expect it to be

P(z31) — w(z1, 22, 23)w(21, 24, 23) = P(224) — w(22, 21, 24)w(22, 23, 24) (3.59)

from consideration of periodicity and singularity.
For N = 2 sectors, ones finds

Vnea(zi) = —Ar2 X N=2 Jim 023 ca

- 12 —



The limit yields

203 + % 203 + = 203 — % 203 — 2
330 [61 ( 03 - 13>91< 03 - 13)61 ( 03 - 13 _uab> 0, ( 03 - 13 +uab>+
0, (Zos ; 213> 0, <Zo3 ; 213> 0, (2'03‘;‘213 _uab> 0, <Zo3;—213 +uab>]
zZ0=Z%21

= [P(231) — P(uab)101(213)%01 (—uap)” - (3.61)
So that, including the momentum factor (B.2§), one eventually obtains
_ 1
(W) Yoo = 5 (Nifafsfo)llpi, zi){2F n=2 — (3.62)
+En=2[P(213) — w(z1, 22, 23)w (21, 2, 23) + P(224) — w(22, 21, 24)w (22, 23, 24)] } ,

where
Fn=z = —En=2P(tap) = —4m> XN 7P (uap) - (3.63)

The other kind of disconnected contractions lead to three inequivalent possibilities that
yield terms of the form

4 22
() hydrse = 2—4(f1f2)(f3f4)3§(212)3§(234)5£[ : (3.64)
Dropping the kinematical factor, summation over spin structures yields
[P(212) + P(z34)|En + Fiv (3.65)

where

Fn = cat 12 (3.66)
(0%

turns out to hold for the Far previously defined in (B_Eﬁb and (m) Indeed, (B.66) can be
simplified using (B.37) and [[fq]

ei_l = im0req_1 + 2meq_1 + %gg (3.67)
to . )
Fn = 2mEn —i ) Ca [99‘(1)((0)) - (ZEESD zZN (3.68)
In N =1 sectors one finds
4 I "
%:ca 0&7;?50) H g?ng)) - %a\/zl {% _ 6771} (3.69)
and

" 2 u[ 4 aZQZ: _ N )3 aul
S Ha(O))HHQ( ):%Z%az[e (2)°]:=0 — 26a(0)0 (0)H9 (w) (3.70)
I [
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The second term is given in (B.69), while the first can be computed by means of the identity

6a(2)? _ Sal2)61(2)%0a(0) _ [P(2) = car1t(2)26a(0)

0.(0) 01(0)2 a 01(0)2 ’

that after differentiation and summation over the spin structures yields

4 2 I
lgwxégzl o 9:10a(2)]2=0 H O (uyp)

= —8mén=1
6 T p0a0) gl
so that eventually one indeed finds
1H"(0
Frer = Ena [5 H,((O)) +3m} |

as above (B.57). Including the momentum factor (B-29) yields

()it = i(f1fz)(f3f4){5/\f:1[7’(212) + P(234)] + Fn=1}(pi, 2i) -

In NV = 2 sectors one has

Fres = —Xn6 S calfl(0) — 206, ()220 0b)

xN=2 0a(ugp)?
= 47715/\/:2 — C;;% Z:Ca(g”(())2M .

The last sum leads to

0202 z+w zZ+w Z-w zZ—w

83810 [61< B )91< 5 >61< B uab> 61( B —l—uab)—i—
Z—w Z—w Z+w Z+w

n(550) o (557) 0 (55 ) o (S5 e |

= —01(0)*[0; 10g 01 (uab) — 2m] = 01(0)*P (uap) -
Including the momentum factor finally yields

(Y)Yt = %(f1f2)(f3f4){5/\f=2[73(212) + P(234)] — Fan=2}1(pi, z) ,

where

Fn=2 = —En=2P(ua)
as above (B.63) and Ex—s is defined in (B.33).

4. Summary of the results for CP even amplitudes

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

Let us summarize our results in the NSR, formalism according to the number of supersym-

metries preserved for the CP even amplitudes receiving contribution from the sum over

even spin structures.
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4.1 No fermion bilinears
(ay - (9Xeip1'x(z1)a2 . 8Xeip2'X(z2)a3 . 6Xeip3'X(Z3)a4 . (9Xeip4'x(z4)>even =0 (4.1)

in any supersymmetric sector after summing over the even spin structures.

4.2 One fermion bilinear
< LR ePrX (2))ag - 0X e X (25)as - 0X e X (2z3)ay - 0XePY X (24))epen =0 (4.2)

due to normal ordering of the fermion bilinear.

4.3 Two fermion bilinears

< fulylwulwyl Zpl X( ) fugygwu2wy2 Zpg X(ZQ)G.?) . ({“)Xeip3'X(23)a4 . 8X€ip4.X(Z4)>even

1
_§(f1f2)€NH(Zi§pi) az - a40304G34 — Z az - p;03Gs; Z a4 - p;01Ga;
i#3 j#4
plus permutations (6 in all), where
= HGXP(—Pi -p3Gij) (4.3)
1<j

and, depending on the number of supersymmetries N\,

!

_ 0
Enma=0 ,  En—o=(2m)2XN=2 | Eyvoi=2nxN= 1A ), (4.4)

H(0)

with H(z) = [1; 61(z + uly) and, up to §(3_; pi),
[

Xé}f:‘l _ (2m)* Aap ’ X%ZQ _ (27T)4Ic#>Aab ’ é};[:l _ (2m)* Zap (4.5)

An(a't)? An(a't)? An(a't)?

4.4 Three fermion bilinears

(= lewlw“ P ¥ (). —fﬁ’gygw“%” e X (23)as - 0X e X (24)) even

= (fifofz)Enw(z1, 22, 23) Za4'pj34g4j (zi; i)
74
plus permutations (4 in all) where

w(21, 22, 23) = 0110g 01(212) + 0210g 61 (223) + 03 log 01 (231) = 01G12 + 02Gaz + 03G31 . (4.6)

4.5 Four fermion bilinears, connected

i 1 i - 1
(G a0 X (1) Ll N ()0 = S (1 fafafs) X

(25 i) [EN[P(213) — w(z1, 22, 23)w (21, 24, 23)] + Fr + (1,3 5 2,4)] (4.7)

plus permutations (3 in all) where

H”/
Fn—a=(@m)' Ny, Fnoa=—Ex—2Plua),  Fxo1=Ena [3771 lG H’(( ))} ’
(4.8)

with m, = —2mi0; logn.
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4.6 Four fermion bilinears, disconnected

<% ;111/1 ¢“11/JV1 eip1-X(zl) .. %fﬁ4u4¢ﬂ4¢V4€ip4'X(Z4)>gf}Se% _
i(flfQ)(f?’fQH(Zi;p,‘){gN[’P(zm) + 7)(234)] _ -7:./\/} (4.9)

plus permutations (3 in all).

5. CP odd amplitudes in N' = 1 sectors

In the odd spin structure, the presence of a supermodulus requires the insertion of () =
et¥ in order to absorb the zero mode of the anti-superghost 3 = e~¥0¢. The presence of
a conformal Killing spinor requires the insertion of §(y) = e~% in order to absorb the zero
mode of the superghost v = ne™. This allows one to fix the position in superspace of
one of the vertices that would than be of the form V = a - ¢ exp(ipX). The two combined
operations are equivalent to inserting a picture changing operator I' = ¢¥G + - - -, where G
is the worldsheet supercurrent, at an arbitrary point zy and using the (-1) picture for one
of the vertices. Independence from z; allows one to let zg coincide with the position of the
vertex in the (-1) picture and replace it with the expression in the (0) picture after using
<e‘p(z)e_“"(w)>odd = 1. Moreover one has to absorb the four zero-modes of the spacetime
fermions present in N' = 1 sectors. In N' = 2 and N/ = 4 sectors, CP odd amplitudes
with only vector bosons vanish. There is no way to absorb the two (for NV = 2) or six
(for V' = 4) additional zero-modes of the internal fermions present in these sectors. More
complicated amplitudes with matter scalars and fermions can accomplish the task.

Let us thus concentrate on N = 1 sectors and start from the simplest non vanishing

contribution.

5.1 Two fermion bilinears (6 terms)

Thanks to the exact cancellation between bosonic and fermionic non-zero modes on the
worldsheet the final result for terms of the form (0X0X : ¥ :: 1) :)qq is very simple and
compact

4
2 2 = _
(09X (21)0X (22) : b2 (23) - Y9 (24))oda = o3 ( T_A> (fs- fa) Xy =" %
2
la1 - a20102G(212) — > _ a1 pihG(21:) Y _ az - p;02G (225)| T (25 pi) (5.1)
i#1 J#2

where TI(z;;p;) denotes the momentum factor (B.25) and the overall coefficient takes into
account symmetry factors and the correct normalization of the fermionic zero-modes. In
addition there are five more permutations.
5.2 Three fermion bilinears (12 terms)

The next simplest term is

(s (z1) s s (22) - Y- (23)0X (24))odd - (5.2)
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The four zero-modes can be absorbed in three distinct ways. For instance, absorbing two
of them at z3, one at z; and one at z5 and contracting the remaining two fermions at z;
and zy yield

1
3 -
(OX (V)*)oda = % (1 / %) (fr- fo- f2)XN T S(212)(pis i) > s - pidaG(zia)  (5.3)
i

plus two more permutations. In the odd spin structure the fermionic propagator can be
taken to be [R,

Im(z —w)

S(z—w) =-0,G(z —w) = 9, logb1(z — w) + 2mi T

(5.4)

5.3 Four fermion bilinears (21 terms, 3 structures)

Finally the most laborious term is

G (z1) s s (22) i (23) c Yt (24))o0dd - (5.5)

In this case there are three possible ways of absorbing zero-modes.
Absorbing two zero-modes at one point (say z1) and two at another point (say z3), for
a total of 6 permutations, contributes expressions of the form

T3

9 4
<<ww>4>2232°°°)=—§—4< %) (if)(fs- INXYT S ) llpiz)  (5.6)

plus permutations.

Next, one can absorb two zero-modes at one point (say z1), one at another point (say
z9), and one at a third point (say z3) for a total of 12 permutations contributing expressions
of the form

T35

4 4 ~
<<ww>4>2221°1°°):%< é) (o fi- fs- )XY S(20)S (zs)Mpiz ) (5.7)

plus permutations.
Finally one can absorb one zero mode at each point which yields

4
4
lololol 2 2 _
<(¢¢)4>£d250 olo) — < —T2A> €prpapspa f1 15 U 5P 54,)2\2% 18 (212)S (234)(pi; i) ,

Tt
(5.8)
as well as two more permutations arising from different Wick contractions of the fermionic
non-zero modes.

6. Forward scattering

The recipe for computing string amplitudes requires integrating over the insertion points
and then over the modular parameter(s) of the relevant Riemann surface. The task is pro-

hibitively complicated, if not impossible, in general. Yet for some very special amplitudes

,17,



or kinematic regimes the situation drastically simplifies. This is the case for non-planar
forward scattering that, as we will see, allows to extract interesting predictions for near
future colliders.

For forward scattering py = —p4, po = —p3. As a result there is only one non-zero
kinematical invariant

PL-P2=p3-Pa=-—PL-Pp3=p2-ps=—5/2=u/2 p1-pi=p2-p3=0=1t/2 (6.1)

so that
IL(ps, z;) — (s, z;) = exp(s/2(Gi2 — G13 + G34 — Goa)) . (6.2)

Moreover, since a; = a4 and as = ag, one easily finds

(fifr) = (fafs) = =(fifd) =0, (fafe) = (f3f3) = —(faf3) =0 (6.3)

and

(fif1) = (fafa) 0
(fof2) = (f3fs) = —(fof3) = (fsf2) = 0

in addition all cubic contractions vanish

(fifife) =0 , (fififi) =0 (6.6)

since at least two of the f’s are equal (opposite). As a result contractions involving three

I

|
—~
e
N
~

I
—~
N
v e
~

I

fermion bilinears give vanishing contribution to forward scattering both to CP even and
CP odd processes.

Moreover for non-planar amplitudes the two stacks of branes should be of the same
kind a = b so that T} = Ti and Ty = Tg and trq(T1To) = try(T5Ty).

Notice that integration over the four points is unrestricted in the non-planar case,
since the Chan-Paton factor tr(717%) tr(757y) is invariant under re-ordering of z1, zo and of
z3,24. So even if a priori 0 < z1 < z3 < 1 for a given Chan-Paton factor tr(7175) tr(757y),
the other ordering 0 < 22 < 2z; < 1 has the same Chan-Paton factor since tr(7T172) =
tr(ToT1). This extends immediately to twisted sectors whereby tr(Ty ToW*) tr(T3TyWF) is
also invariant under reordering since [W,T;] = 0. Integrating by parts is thus possible and
further simplifies the non-planar forward scattering amplitudes.

6.1 CP even amplitudes

For forward scattering, dropping total derivatives and Chan-Paton factors but including
all relevant permutations, CP even amplitudes with two fermion bilinears read

<;fﬁlu1¢“1¢yl p1-X Zl) fu2u2wu2wy2 ng X(Z2)a2 03 Xe~ Py X(Z3)a1 0y Xe™ P X(Z4)>even
_ (f1f2)
+perms = — =7 EN[0102G12 + 0304G34 + 0103G13 + 0204Go4]11 (245 5)

where, for shortness, G;; = Q(zij) and

(f1f2) = 2[(a1 - p2)(az - p1) — (a1 - a2)(p1 - p2)] - (6.7)
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CP even amplitudes arising from connected (box-type) contractions of four fermion
bilinears can be conveniently simplified using the identity [87, BY

1
Ba(z1, 22, 23, 24) + Ba(21, 23, 22, 24) + Ba(21, 23, 24, 22) = 5(9? log 0 (2)|2=0 , (6.8)
where
Ba(z1, 22, 23, 24) = Sa(212)Sa(223)Sa(234)Sa(214) (6.9)
and observing that for forward scattering
ty = (fifafsfs) = (ffafafi) = (ffsfafs) = ala3(p: - pa)? (6.10)

and

ta = (fifsfaf2) = (fifafif2) = %(ﬁfz)z =2[(a1 - p2)(az - p1) — (a1 - a2)(p1 - p2)]* . (6.11)
One then has

{t1[Ba(21, 22, 23, 24) + Ba(21, 23, 22, 24)] + taBa(21, 23, 24, 22) } 20t
1
= §tlzaa§ log HQ(Z)|Z:0 + (tQ — tl)Ba(zl, 23,24, ZQ)Za . (612)

Summing over the spin structures eventually yields

i

(= m 1¢M1¢V1 e X(Zl)
2 1%

2 M2V2¢M2¢V2 ep2- X (22)

i Y3 3e —ipy-X(23) L
2 AL3V3 2 ﬂ4l’4

H(ZZ‘; S){(tg — tl)gN[P(ZM) — w(zl, 24, zg)w(zl, 24, 2’3)] + (tz + 2t1).7::/\[} .

gV e~ P4 X(24)>F5700"” — (6.13)

even -

Recall that symmetry under (14) < (23) exchange is expected and would follow
if (§59) hold.

For forward scattering the disconnected CP even contractions of four fermion bilinears
yield

<—fﬁm¢“1w“1 eZPI'X@l’—fiQVQWW g2 X(22)

¢M41/}V4 —Zp4 X Z4)>FS dZSC — (614)

EVEN

Y3y se —ipy-X(23) L f

,uslfs Havy

%Hm Vo {ENTP(212) + Plza) + Pla13) + Pl22a)] — 2} .

6.2 CP odd amplitudes

For forward scattering CP odd contractions of two fermion bilinears, after integrating by
parts and including all the four non-vanishing permutations, one finds (recall o/ = 1/2)

~ 4
(OX 0X + v = s 5 = — LN <\/TZA> N (615)
2

I1(zi; )[0102G(212) + 0304G(234) + 0103G(213) + 0204G (224)] .
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For forward scattering CP odd contractions of four fermion bilinears can be simplified
by means of the identities

v A 1 r3
€urpnpspafi - oSS f1 Npe f517 = —§(f1f2)(f1f2) (6.16)

and

(fifofrf2) = %(fle)(flfz) : (6.17)

Thus eventually one gets
R R R R VIR i(f1f2)(f1f2)Xé\1{:1(512 —S34—Si3+820)° . (6.18)

7. Imaginary part and total cross section

According to the optical theorem, the total cross section for the production of closed string
states in the bulk, obtains from the imaginary part of the non-planar forward scattering
amplitude

oron(s) = %ImApg(s) . (7.1)

It turns out to prove convenient to transform the non-planar amplitude to the trans-
verse channel that exposes the ‘tree-level’ unoriented closed string exchange. It is remark-
able but not unexpected that our final compact expressions for the amplitudes transform
covariantly, thus providing a check of their validity, if needed. Indeed, performing an
S-modular transformation from 7 = it/2 to 7 = i/ one finds

Fn(T = —1/7) = —if3Fpn(7) (7.2)

for all the correlators we have computed in any sector of the theory. The overall power of 7
then cancels against the measure of integration dt/t = d¢/¢. Under the required S-modular
transformation, the combinations uéb = kzvéb + €£b7'_,4 transform into &éb = kvéb@\ - €£b.
What was a projection in the direct channel becomes a mass-shift in the transverse channel
and vice versa. The boundary insertion points z; and 2o gets re-located onto a unit segment
along the real axis, while z3 and z4 gets re-located onto a unit segment parallel to the real
axis and displaced from it by an amount 79/2 = £/2.

Thanks to the symmetry of the Chan-Paton factors, the integration is unrestricted and
total derivatives can be dropped since there is no boundary contribution. Indeed, terms of
the form

NG (213) — G(212)]04[G (242) — G(243)|TL(s, 2;) = (2/5)2010411(s, 2;) (7.3)

being total derivatives integrate to zero. The relative sign appear due to pg = —po. Simi-
larly for 2,3 since pgs = —p;.
Terms of the form

NG (z12) — G(213)]02[G (221) — G(224)|11(s, 2;) (7.4)
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are more involved. One has

011G (212) — G(213)]02[G (221) — G(224)11(s, 2i) = (2/5)01[G(212) — G(213)]0211(s, 2;)
= (2/5)02{01[G(212) — G(213)]1L(s, 2i) } — (2/5)0201[G(212) — G(213)]1(s,2:) . (7.5)

The first term is a total derivative and integrates to zero. The second term can be conve-

niently rewritten as
@ T
82619(z12)1'[(s, Zz) = —E[P(Zlg) + 21 + 27_—.,4]1_[(8’ Zz) . (7.6)

The same applies to the pairs of points (1,3), (4,3) and (2,4).
Dropping all the tildes for simplicity, the final form of the worldsheet integrals one
needs to compute for the CP even case is

s t
ANP(s) = / Xy / [ dzie2 G2 Grst9sa=G2a) {21, i + a—ng <4m + %) +

t +1
o~ t)EN TP - (OiGi)? + 222

EN[P12 + P3g + P13 + Poal} . (7.7)

For N' = 4 sectors, Ear—4 = 0 and only the first term contributes and yields

ARS :KN4(s;a1,a2)/0 de 2(152 H/ dalx (b; z; = x; + 16;) (7.8)

where 5 ) i
2a%a . 2m)*V. s
Kn—a(s;a1,a9) = — 2 ];2) 3( ) Vo tr(T11)%, (7.9)
20502921:42/\67&]\70%

0 < d < 6 is the number of ‘large’ internal dimensions in the D3-brane description, i.e.
‘small’ in the T-dual D9-brane description, and d; = dy = 0 while 03 = d4 = ¢/2. Depen-

dence on the insertion points is only through IIx (; z;).

—27l

Exploiting the series expansions in ¢ = e collected in an appendix, one finds

[4¢"/* sin(m212) sin(ra34)]* *Tx () = 1 — 2a/5q"?[cos(2ma13) + cos(2maas)]
+20/sq{1 + cos(2mx12) + cos(2mx3y) +

(o/s — 1)[cos?(2mx13) + cos?(2mxaq)] + 20 s cos(2mw13) cos(2mwas)}

—i—%o/sq?’/z{[l + cos(2mz12) + cos(2mx34) + (s — 1) cos(2mz13) cos(2mxay)] X

x 30/ s[cos(2mx13) + cos(2mxay)] + (/s — 1)(a/s — 2)[cos® (2mz13) + cos® (2mxa4)]}

—i—éo/sqz{Q(o/s —1)(a/s — 2)(a’s — 3)[cos* (2mz13) + cos® (2mway)] +

+8as cos(2mz13) cos(2maag)[(o/s — 1) (/s — 2)(cos?(2mz13) + cos?(2mray)) +
3a’s(1 + cos(2mx12) + cos(2mw34))] +

+120/s5(a’s — 1)? cos?(2mx13) cos (2mxay) +

+12[cos? (27 13) + cos?(2mway)|(1 + o' s(a's — 1)[1 4 cos(2mz12) + cos(2mz34)]) +
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+3{2(a’s 4 1)[cos(2mx12) + cos(2m234)]? — 4 cos(2mx12) cos(2ma34) +
+2(2a’s + 1)[cos(2mz12) + cos(2mxas)] + 2a's — 3} + -+ .
(7.10)

Truncating to lowest order (i.e. ¢°), performing the trigonometric integrals over the
insertion points by means of®

[ (5%)C (3 +n)
L (1+n+%)

1
/ dz(sin wz)*(cos mz)?" = , (7.11)
0

and extracting the imaginary part by means of

Im ( / h dee—ae—ﬂf> = ”I?(Z)I : (7.12)
0

one gets

B ' T ma's 51 F(l_—o‘ls) ?
ao(s) —KN=4(s,a1,a2)8P(g) <— 5 ) [26“5\/7?]?(21 — QTIS)] (7.13)

for 0 < o's < 4, in perfect agreement with the results of [[1], mutatis mutandis.

Integration over x13 (equivalently xo4) effectively kills all half odd integer powers of ¢
in the expansion of Iy, given in an appendix. The next contribution in N' = 4 sectors thus
comes from terms of order ¢'. Performing the trigonometric integrals over the insertion
points by means of (7.11]) and extracting the imaginary part yields

2B1(a’s) (7.14)

01(8) = Kn=a(s;a1,a2)

T (_71'(0/5—4))51 [ P(l_QO/S)
sT(2) 20's /Al (1 — %2)

for 4 < o/s < 8, where the 'form factor’ is given by

2
0/3)2—30/8—1—4_ O/S—%) +£

Bi(a's) = 2(afs)”! (@5 —2)? - 2/t (a5 =27

(7.15)

in perfect agreement with the results of [[1], mutatis mutandis.
For N' = 2 sectors the last term Fjr—o gives similar results after replacing the overall
kinematical factor with

22a3a3(p1 - p2)?(27)°T 5V, 4

™
Kn=2(s;a1,a2) = Y tr(WiT113)?, (7.16)

26502025,2, 1 Norb
2—d

2n+1

5Tt is easy too see that fol dx(sinz)® (cos mx) = 0 or more generally

1 imh T (1ta 1+b
/ dx(sinmv)a(coswx)b — lte F( 2 )F(bz) )
0

2 I (1+
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where the first factor comes from the constant term (¢%) in the expansion of —P(u), and
taking into account that the number of ‘large’ internal dimensions satisfies 0 < d<2in
these sectors.

For N' = 1 sectors the last term Fjr—; gives poles rather than a cut since d=0in
these sectors. The massless poles corresponds to the dependence of the gauge couplings on
the VEV’s of the massless closed string scalars in the twisted sectors. Massive poles signal
the possibility of producing (unstable) closed string i.e. one should read ‘resonances’ with
not necessarily integer masses (in 1/a/ units).

A potential negative mass pole might arise from P(z12) and similar terms. By OPE
considerations however it should be absent. Reassuringly one finds this kind of terms with
coefficient proportional to 1+ (1/c’s) so that

1 1 , P(l—a’s)
<1 + —) / (sinmz) ™5 2dx = — 2 ; (7.17)
a's /) Jo 20s /rT(1 — 28)

has no ‘tachyonic’ pole. The next term in the ¢ expansion of P(z12) is a constant (—72/3)
that yields integrals of the form ([7.13). i.e. the form factor of the ‘zero’ mass states. The
term of order ¢ is proportional to sin?(27x). Integration then yields

1 ! 1-a's
/ -1 I'(—==
/ (sinma) = 5T 2dy = as () (7.18)
0

a's =224, /7(1 — O‘T/s) .

The same situation prevails for the terms in P(z34).
Finally one should consider the combinations P(z14) — (01 914)2, plus the corresponding
ones with (1,4) replaced by (2,3). Quite remarkably

P() — (D161)” = —4mi - log (%) (7.19)

that admits the following expansion

P(214) — (01G14)? = —% — 82 Z (f)q"ﬂ% cos(2md,x14)
n,dn|n

2
=-3~ 872[q"/? cos(2ma14) + qcos(dmmiy) + -], (7.20)
where d,|n denotes the divisors of n. Combining with ITx one finds that half odd integer
powers of ¢ vanish after integration over dxi3 or, equivalently, drss. However new integer
powers are generated by combinations of integer and half odd integer powers of ¢ IIx and

P(214) — (01G14)%. For instance at order ¢ one finds

212/ s

{1 + cos(2mz12) + cos(2mx34) +

(/s — 1)[cos? (2m213) + cos?(2m294)] + 20 s cos(2mx13) cos(2mwas)}

—872 cos(4mx1y) + 1672 s cos(2mw14)[cos(2mz13) + cos(2mray)] (7.21)
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After integration over dwz13 or, equivalently, dzay, the last term gives 8m2a’s[cos(2mx34) +

cos(2mx12)], that modifies o1 (s) when combined with the lowest order term in®

Eno1 3T +2m Y g+ Am Y gt (7.22)
I 1
New thresholds with fractional mass appear due to the fractional powers in the expan-
sion of Epr.

Terms in P(z13) and P(z24) can be discussed similarly.

8. Comments

In their present form, our results are not directly related to processes observable at LHC.
Without some recoiling observable (open string) states it is impossible to detect the decay
into closed strings in the bulk. Yet it should not be difficult to include some soft observable
particle along the lines of [[f1]. For hadronic colliders, such as LHC, a much subtler issue is
how to extract hadronic cross sections from the ‘partonic’ cross sections we have computed.
One has to convolute our or similar results with the partonic distributions of the relevant
hadrons, i.e. the proton. To the best of our knowledge these are not known in analytic
form but significant effort [B9 is presently devoted into this important step.

At a more formal level, our results, obtained for a specific yet interesting class of super-
symmetric models with open and unoriented strings, display a remarkably simple structure.
This is largely due to the already observed fact that open string gauge bosons belong to
the ‘identity’ sector of the internal conformal field theory, describing the compactification
from D = 10. We thus see no major obstacle in extending them to the case of genuinely in-
teracting internal A' = 2 SCFT’s, such as Gepner models [0{]. It is tantalizing to speculate
that

£6) = — Z Caba1Z) (8.1)
and
Fl) = anei,lzgﬁ (8.2)

should remain valid, once the relevant partition functions Z&s), with s ranging over all the
sectors of the open string spectrum, are extracted from the supersymmetric characters

S S 004 O s
W =Y ez = an%wg ), (8.3)

e} e}

where W&S) denotes the contribution of the sector s of the internal AV =2 SCFT in a given
spin structure a [P1], PJ].

We would like to conclude with a comment on the supersymmetry properties of our
amplitudes. Some time ago [PJ], Berkovits and Vallilo have proposed manifestly supersym-
metric one-loop amplitudes for massless closed string states based on the hybrid formal-
ism [p4]. Deducing similar amplitudes for massless open string states should be straight-
forward in the hybrid formalism. However due to the factorization of the spacetime and

SFor simplicity we assume kvl, < 1.
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internal SCF'T’s in the hybrid formalism, in the absence of RR fluxes, it is not clear to us
how to reproduce the simple yet non trivial internal structures, such as the functions Exr—1
and Fy—1 that we have found in the NSR formalism. Other manifestly supersymmetric
formalisms [67, PJ] may help clarifying this issue. We leave it to future work with eyes

wide open to the possibilities of dealing with RR fluxes [P and the associated non-trivial
warping arising in flux compactifications [97).
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A. Elliptic functions

A.1 Definitions

Let ¢ = €*™7 the Jacobi #-functions are defined as gaussian sums

0[5] (2lr) = Y gt 2rile=hln=a) (A1)

where o 3 € R.
Equivalently, for particular values of characteristics, such as «, 3 = 0,1/2 they are given

also in terms of infinite product as follows

o0
} (2|7) = 01(2|T) = 2q8 sin(7z) H 1—4¢™ BQWiqu)(l _ 6—2m’zqm)

m=1

>
—
[MENIES

-

0 |:2:| ( ’T) - 02( ’T) == 2q8 COS 7'('2 H 1 — q 1 +e27”2 m)(l +e*2ﬂ'zzqm)
m=1

o0

03] (217) = 0321r) = [T (1= a™) @+ 2)(1 4 7> 72)

m=1
9]

03] 1) = ulelr) = T (1= g™ (1 = em2qm )1 —e2m2gm3) . (A2)

m=1

Dedekind n function is defined as

%H (1—q") (A.3)

"The most credited version being now: L’italia Ha vinto il Campionato del mondo.



and satisfies 6/ (0) = 27n3.

Weierstrass P function

P(z) = —0%log 01 (z) — 21, (A4)
where ///(
.0 167'(0)
= —2mi—1 == A.
m i 1081 = 5 a0y (A.5)

has a double pole at z = 0 and is bi-periodic in z.
The free fermionic propagator in the even spin structures (Szego kernel)

Sa(z) - (Aﬁ)

Sa(2)? =P(2) —€a-1, (A.7)
where o
.0 0,,(0

€a—1 = —47115 log — (A.8)

are also related to P(z) evaluated at the semiperiods

e1:7><%>, eQ:P<1;T>, es=P(2) . (A.9)

In the odd spin structure

S1(z) = —0.G(2) (A.10)

is biperiodic with a simple pole but not analytic.
The free bosonic propagator (biperiodic with logarithmic behaviour at z = 0) on the
(covering) torus is given by

- 2—ﬂ1m22] . (A.11)

A.2 Pseudo-periodicity and zeroes

Under lattice shifts of their first argument z, theta functions transform according to

0[5] (= + 1r) = &0 [3] (=Ir) (4.12)
0 [8] (= 4 7lr) = e 2T EHDT [3] (2] (A.13)

The location of their zeroes is given by

BN =0 © zum=(a—g+n)r+(F—g+m). (A14)
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A.3 Modular Transformations

Under T and S modular trasformations of their arguments theta functions transform ac-
cording to

0 [35) Gl - 2) = (mimy 2messin/m g [0 ] )
n(=2) = (=ir)in(r) (A.15)

The modular transformation P, that connects the direct and transverse channel of Mobius
strip amplitudes, is more involved. It consists in a sequence of T and S transformations
(P =TST?S) on the modular parameter 7ay = 5 + %

z. 1

al (~ 12 i _ —ima(a—1)—2mi(a+B—1/2)2 4222/t /- a+26-2 1 E
0B Glatg) = Vit [1/2*%%3] (25 +3)
1 7 . 1 it
SN in/d -4z
77(2 + 2t) et/ —it 77(2 + 2) ) (A.16)

A.4 Useful Identities

Riemann identity for even spin structures reads

Z Caaa(zl)aa(ZQ)Ha(ZfS)HCV(Z‘l) =

01(21)01(22)01(23)01(24) — 01(21)01(25)01(25)01(2]) , (A.17)

where 2z and 2! are related to z; through

1
zi:§(2’1+22+2’3+24) =gz +2 - 25— 2)

N|—DN|

1
2y = 5(21—224-23—24) 7y =5(71— 22— 23+ 2) (A.18)
and

1 " 1
z1 Z—(—Z1+2’2+23+Z4) 29 :—(21—22+23+Z4)

9 2
1
zé’ = 5(2’1 + 29 — 23 + 24) zf{ = 5(21 + 29 + 23 — 24) . (A.19)

A.5 Series Expansions

Series expansion in powers of ¢ yield

n

q
1—gm

0, log0(z,q) = mcot(mz) + 4m Z sin(2mnz)

= mcoth(mz) + 4w Z q" sin(27d,,z) (A.20)

n,dn|n
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and

2 m? 2 ng"
07 logb1(z,q) = “Sn(ro)? + 81 En o cos(2mnz)
= —L + 872 E q"dy, cos(2nd, z) , (A.21)
sin(7z)? )
n,dn|n
where, using 0.q = 2iq,
2 ) 772 )
_ 5 _ - n
m = —2mid; logn = 6 4w E —¢ 6 4w dE l q"dy, (A.22)
n,dn|n

so that

2

P(z) = —0?logb1(z,q) — 2 = —|— 82 Z q"d,[1 — cos(2md,z)] . (A.23)

s1n(7rz) orarl

Moreover

4mid; log 01(2,q) = —n* 4 872 Z q dﬁ 1+ 2cos(2md,2)] (A.24)

n,dn|n

and

611 (27Q) 2 2 0’1/(2’7q) 2 -
SLmAN) = — = 92 10g 6 — 4mid; log 01 (=,
(61(2’(1) 07 log 61(z,q) 010, q) 0; log 01(2, q) — 4mid; log 01(2, q)

2
= —n%cot(rz)? — 872 Z q" [(d—n - dn> cos(2mdyz) + dﬁ
n,dn|n n n

(A.25)

For points on different boundaries in the transverse channel 8, gets effectively replaced
by 64 for which

qn/2
0,logb4(z,q) = 4712 .

— sin(27nz)
1—(— n/dn
= 4r Z ¢ ————sin(2rd, ) (A.26)

n,dn|n

and

n/2
0% log 04(2,q) = 87T2Z ng” cos(27rnz)
n/dn

1—(—
= 87 Z P d, cos(2nd,z) . (A.27)

n,dn|n
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Moreover

2q"™ cos(2mnz)
47idy 1 = 872 A2
w10y log 04(z,q) = 87 Z [1 mpe =g } (A.28)
2 — (=)™ n/2
= 87 ; dng" + faq cos(2md,2)
so that
92(2,(1))2 2 0i(2,0) _ 52 .0-04(2,9)
= 0;logl4(z,q) — ——= = 07 log04(2 Ami——————= A.29
(i 80z 0 (o0 shlsa) g Gy B
o2 — (=) n n/2
= —87 dz dnq" + 5 (dn dn> q"'* cos(2mdyz)
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